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Abstract: Cerebral Microbleeds (CMBs) are small chronic brain hemorrhages which are caused by structural 

abnormalities of the small vessels of the brain. CMBs are increasingly found in various patient populations and disease 

settings, including first-ever and recurrent ischaemic or haemorrhagic stroke, Alzheimer's disease, vascular cognitive 

impairment and healthy elderly individuals. Previous clinical routine, CMBs are manually detected by radiologists and 

it may produce the errors and time-consuming. In this paper, we proposed a two-stage cascaded framework to detect 

CMBs from magnetic resonance (MR) images using 3D convolutional neural network (CNN). We first endeavour a 3D 

fully convolutional Network (FCN) technique to recover the candidates with high probabilities of being CMBs, and 

afterward apply a well-trained 3D CNN discrimination model to recognize CMBs from hard mimics. Within our 

framework, the Hierarchical Centroid Shape Descriptor (HCSD) is allows to select only those having a specific 

structure. We illustrate that proposed framework can be utilized to prepare efficient and accurate classifiers that could 

introduce further Computer-aided diagnosis. 
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I. INTRODUCTION 

 

Cerebral Micro bleeds (CMBs) are small foci of chronic 

blood products in normal (or near normal) brain tissue, 

have been an increasingly recognized entity since the 

widespread application in the early to mid 1990s of 

magnetic resonance imaging (MRI) techniques customized 

to detect magnetic susceptibility. Recently, CMBs have 

been recognized as an important biomarker of 

neurovascular pathology by providing evidence of micro 

vascular damage and leakiness [2].  

The clinical manual detection process is time-consuming 

and very subjective with limited reproducibility. Due to 

increasing of medical data flow, the accurate detection of 

CMBs in the MRI becomes a fastidious task to perform. 

For that reason, the expansion of computerized detection 

methods would improve the pathological examination 

efficiency and reliability.  

 

The computerized detection of CMBs faces several issues: 

1. There is a huge variance about the size of CMBs with a 

dimension ranging from 2 mm to 10 mm.  

2. The common distributed locations of CMBs make 

complete and accurate detection even harder.  

3. There can be found significant amounts of hard CMB 

mimics, e. g., flow voids, calcification and cavernous 

malformations, (see the red rectangular box in Fig 1) 

which would resemble the appearance of CMBs in 

scans and greatly delay the detection process. 

 

In order to accurately and efficiently detect CMBs from 

volumetric brain data, we propose a robust and efficient 

method is 3D CNNs. Particularly; our method consists of 

two-stage cascaded framework:  

a. The screening stage. 

b. The discrimination stage. 

 

 

 
Fig 1. Better view of CMB and CMB mimics are denoted 

in yellow and red rectangular box. 

 

In the screening stage, a small number of candidates are 

retrieved using a novel 3D fully convolutional network 

(3D FCN) model. Then the candidates obtained from the 

screening stage are carefully distinguished in the 

discrimination stage to detect CMBs from hard mimics. 

This stage removes a large number of false positive 

candidates. Within our framework, the Hierarchical 

Centroid Shape Descriptor (HCSD) is allows to select only 

those having a specific structure and yields the accurate 

final detection result. Before that, a pre-processing step is 

perform for removing the noise in an image and preserve 

useful information from the de-noised image.  
 

The main aid of this work as follows: 

1. A novel 3D FCN strategy is to successfully avoid 

redundant computations and dramatically increase the 

detection speed. 

2. The 3D CNN adequately encodes the spatial contextual 

information and hierarchically extracted high-level 

features in a data driven way and demonstrates better 

performance. 

3. The HSCD allows only selecting an accurate shape of 

the CMBs for better detection result. 
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4. The proposed framework to efficiently and accurately 

detect CMBs and can be easily adapted to other 

biomarker detection tasks. 

 

The remainder of this paper is structured as follows. 

Section II presents some previous work related to the 

CMBs. Section III describes our proposed framework in 

order to select CMBs accurately and efficiently from hard 

mimics. In section IV report the experimental result of 

CMBs detection by using the proposed approach. Finally, 

section V gives conclusion. 

 

II. RELATED WORK 

 

Previous automatic CMB detection methods mainly 

employed hand-crafted features based on shape, size and 

intensity information. The design of these hand-crafted 

features depends on the domain knowledge of CMBs. The 

Radon Transform to describe the shape information of 

CMBs, while applied the Radial Symmetry Transform 

(RST) to identify spherical regions as CMBs. To improve 

the capability of discrimination, proposed to measure the 

geometric features after performing a 2D fast RST. In 

addition, these low-level features are usually insufficient 

to capture the complicated characteristics of CMBs [1]. 

In [4], the authors show that the automatic brain tumor 

segmentation with deep neural networks. It described best 

architecture and identified certain modelling choices that 

have found important to obtain good performances. The 

time needed to segment an entire brain is around 20 

minutes. 

In [5], difficulties are observed in the segmentation of 

lesions of particularly small size. The separation of lesions 

into different categories, for instance according to their 

size, and their treatment by separate classifiers could 

simplify the task for each learner and help alleviating the 

problem. 

 

The authors in [6] suggested a solution to train a deep 

network with a spatial pyramid pooling layer. The 

resulting SPP-net shows outstanding accuracy in 

classification/detection tasks and greatly accelerates DNN-

based detection. The studies also show that many time-

proven techniques/insights in computer vision can still 

play important roles in deep-networks-based recognition. 

In conclusion, on SWI, higher MB numbers were detected 

in more patients, irrespective of MB location. On both 

sequences, MB number contributed to clinical and 

radiologic associations. On SWI, the associations found on 

GRE were corroborated; however, the higher MB numbers 

found on SWI compared with GRE did not improve these 

associations [7]. 

The authors in [8] propose to classify brain image as 

normal or abnormal by using neural network. The work 

realized by [9] describes a computer-aided detection 

system. This framework is based on histogram 

equalization and morphological mathematical operations. 

The mentioned experiments were performed on 125 MR 

images. 

III. METHODOLOGY 

 

The developed framework as shown in Figure 2 is 

accurately and efficiently detecting the true CMBs. The 

proposed framework includes screening stage and 

discrimination stage. 

In the screening stage, the 3D FCN model takes a whole 

volumetric data as input and gives output as a 3D score 

volume. Each value on the 3D score volume represents the 

probability of CMB. Consequently, in the discrimination 

stage, we further remove false positive candidates by 

applying a 3D CNN discrimination model to distinguish 

true CMBs from challenging mimics with high-level 

feature representations. 

 

 
Fig 2. The proposed cascaded framework for CMBs 

detection. 

 

A. 3D Convolutional Neural Network: 

Convolutional Neural Networks are very similar to 

ordinary Neural Networks. They are made up of neurons 

that have learnable weights and biases. Each neuron 

receives some inputs, performs a dot product and 

optionally follows it with a non-linearity. The whole 

network still expresses a single differentiable score 

function: from the raw image pixels on one end to class 

scores at the other. And they still have a loss function (e.g. 

SVM/Softmax) on the last (fully-connected) layer and all 

the tips/tricks we developed for learning regular Neural 

Networks. It takes advantage of the fact that the input 

consists of images and they constrain the architecture in a 

more sensible way. In particular, unlike a regular Neural 

Network, the layers of neurons are arranged in 3D: width, 

height, depth. (Note that the word depth here refers to the 

third dimension of an activation volume, not to the depth 

of a full Neural Network, which can refer to the total 

number of layers in a network). 
 

Commonly, a CNN alternatively loads convolutional (C) 

and sub-sampling, e. g., max-pooling (M), layers. In a C 

layer, small feature extractors (kernels) sweep over the 

topology and transform the input into feature maps. In a M 

layer, activations within a local community are abstracted 

to acquire invariance to local translations. After several C 

and M layers, feature maps are flattened into a feature 

vector, followed by fully-connected (FC) layers. 
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1) 3D Convolutional Layers:  

In a C layer, a feature map is produced by convolving the 

input with convolution kernels, adding a bias term, and 

finally applying a non-linear activation function. By 

denotes the i-th feature map of the m-th layer as 𝐚i
m
 and 

the k-th feature map of the previous layer as 𝐚i
m-1

, a C 

layer is formulated as: 

 

𝐚 i
m 

= σ(  𝐚i
m-1

 * Nki
m

 + bi
m 

)  (1) 

 

Where, 

Nki
m

 and bi
m
 are the filter and bias term connecting the 

feature maps of adjacent layers, the * denoting the 

convolution operation and the σ(.) is the element-wise 

non-linear activation function. 

 

 
Fig 3. 3D convolution kernel 

 

In 3D convolution kernel, as shown in Figure 3 given 

volumetric image with size X × Y × Z, when we use 3D 

convolution kernel to create a 3D feature volume, the 

input to the network is the whole volumetric data. 

Consequently, a 3D kernel is created within the 3D 

topology (see the red line in Fig 3).  

 

By simply the kernel sharing across all 3D, the network 

can take full good thing about the volumetric contextual 

information. Generally, the subsequent equation 

formulates the taken advantage of 3D convolution 

procedure in an element-wise manner: 

 

𝐯 ki
m
(a,b,c)= [𝐚m,n,t  i

m-1
(a-m, b-n, c-t) * 

Nki
m 

(m, n, t)]   (2) 

 

Where, 

Nki
m
 is the 3D kernel in the m-th layer which convolves 

over the 3D feature volume 𝐚i
m-1

,Nki
m
(m, n, t)is the 

element-wise weight in the 3D convolutional kernel. 

Following Eq. (1) and Eq. (2), the 3D feature volume is 

obtained by, 

 

𝐚i
m 

= σ(  𝐯ki
m

 + bi
m 

)                (3) 

 

2) 3D CNN Hierarchical Architecture:  

After that the 3D convolutional layers, we can 

hierarchically construct a deep 3D CNN model by 

stacking the C, M and FC layers, as shown in Fig 4. 

 
Fig 4. The hierarchical architecture of the 3D CNN model. 

 

 Specifically, in the C layer, multiple 3D feature volumes 

are produced. In the M layer, the max-pooling operation 

(i.e., that the feature volumes are sub-sampled based on a 

cubic neighbourhood) is performed in a 3D fashion. In the 

FC layer, 3D feature volumes are flattened into a feature 

vector as its input. The ultimate output layer employs the 

softmax activation to yield the prediction probabilities. 

 

B. Image Pre-processing: 

Image pre-processing can significantly increase the 

reliability of an optical inspection. Pre-processing 

improves the quality of image while conserving the 

original image information. It includes removal of blurring 

and noise, increases the contrast range to enhance the 

image information.  
 

So pre-processing the image is an important and useful 

task for accurate detection of CMBs. Images are 

contaminated with noise. So, such noise often a necessary 

pre-processing step in image processing applications. Pre-

processing steps includes, image scaling, image 

enhancement and Gaussian filter for removing a noise as 

shown in Fig 5. 
 

Scaling is nothing but alter the size of the image. It is the 

most obvious and common way to change the size of an 

image (i.e., resize). The content of the image is then 

enlarged or more commonly shrunk to fit the desired size. 

But while the actual image pixels and colours are 

modified, without any loss of the image quality. The resize 

operator has been very carefully designed to try to produce 

a very good result for real world images.  
 

Image Enhancement is increase or improvement in quality, 

value and it is the simplest and most appealing areas of 

digital image processing. It is the process of adjusting 

digital images so that the results are more suitable for 

display or further image analysis. Enhancement technique 

is bringing out detail that is highlight certain features of 

interest in an image. Example, increase the contrast of an 

image “it looks better”. By contrast the image is used to 

identify the noise.  
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Fig 5. Image Pre-processing. 

 

In our framework Gaussian filter is used to remove the 

low-frequency background noises. Thus noise removal 

filter takes a corrupted image as input and produce an 

estimation of the original image without any noise. 

 

C. Two-stage cascaded framework: 

After pre-processing the image, in order to detect CMBs 

from MR images, we employ 3D CNN based models to 

tap potentials of spatial information in all three dimensions 

and represent them as high-level features. We construct a 

3D FCN model and 3D CNN model personalized for two 

different stages and integrate them into an efficient and 

robust detection framework. In this cascaded framework 

for CMB detection, each stage serves its own mission. The 

discrimination stage with the 3D CNN focuses only on the 

screened set of candidates to further single out the true 

CMBs from challenging mimics. 
 

1) Screening stage:  

In the screening stage, a small number of candidates are 

retrieved using a novel 3D fully convolutional network 

(3D FCN) model. 

 

 
Fig 6. The traditional FC layers are converted into 

 the convolutional fashion 
 

1.1 3D Fully Convolutional Network: 

We propose to use 3D CNN to robustly screen candidates 

by leveraging high-level spatial representations of CMBs 

learned from a large number of 3D training samples. We 

propose to extend the strategy into a 3D format for 

efficient retrieval of CMB candidates from MR volumetric 

data.  
 

The screening stage with the 3D FCN aims to accurately 

reject the background regions (i.e., non-CMBs area) and 

rapidly retrieve a small number of potential candidates. 

The screening stage is including both training and testing 

phases.  

During the training phase, the positive samples are 

extracted from CMB regions. We start from training an 

initial 3D CNN with randomly selected non-CMB regions 

throughout the brain as negative samples. Next, we add 

false positive samples acquired by applying the initial 

model on the training set. Finally, the initial model is fine-

tuned with the enlarged training database.  

Once training is done, the fine-tuned traditional 3D CNN 

is converted into the 3D FCN model by transforming the 

FC layers (i.e., the convolutional layer is the core building 

block of a CNN. The layer's parameters consist of a set of 

learnable filters (or kernels), which have a small receptive 

field, but extend through the full depth of the input 

volume) into the convolutional fashion (as shown in the 

brown box in Fig 6). 

 

 
Fig 7. Testing phase (3D FCN) 

 

During the testing phase as shown in Fig 7, the 3D FCN 

model takes the whole volume as input (with size 

512*512*150 for our dataset) and generates the 

corresponding coarse 3D score volume as output. The 

value at each location of score volume indicates the 

probability of CMB. The proposed 3D FCN can take an 

arbitrary sized volume as input and produce 3D score 

volume within a single forward propagation, and hence 

greatly speed up the candidate retrieval procedure without 

damaging the sensitivity.  

Due to the size of the generated 3D score volume is 

reduced compared with the original input as shown in 

Figure. Meanwhile, the locations on this 3D score volume 

can be traced back to the coordinates on the original input 

space as shown in Fig 8. 

 

 
Fig 8. 3D score volume mapping onto original image 

 

2) Discrimination Stage:  

In this stage, 3D small blocks are cropped centred on the 

screened candidate positions. The size of these blocks was 

carefully validated. We first found that a number of false 

positives were produced in the first stage with a training 

https://en.wikipedia.org/wiki/Kernel_(image_processing)
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block size of 20x20x16. We set the input size as 20x20x16 

in our experiments as shown in Table I, in order to 

discriminate the challenging candidates with a suitable 

receptive field. The extracted 3D candidate regions are 

classified by a newly constructed 3D CNN model. We 

notice that the randomly selected non-CMB samples are 

not strongly representative, especially when we aim to 

distinguish true CMBs from their mimics.  

 

TABLE I Detection Result 

 
 

To generate representative samples and improve the 

discrimination capability of the 3D CNN model while 

applying Hierarchical Centroid Shape Descriptor (HCSD), 

the obtained false positives (which take very similar 

appearance as CMBs) on the training set in the screening 

stage are taken as negative samples when training the 3D 

CNN in the second stage.  

 

2.1 Hierarchical Centroid Shape Descriptor (HCSD)  

The HCSD is selecting the true CMBs based on the shape 

structure. The HCSD is a binary shape descriptor built 

with the centroid coordinates extracted from a binary 

image. It extracted recursively by decomposing the image 

in sub-images. Because an image can be described by the 

spatial distribution of pixels, this method is based an 

image decomposition in the pixel domain by using kd-tree 

algorithm. The neighbourhood information like the 

centroid coordinates of local regions is extracted.  

 

 
 

IV. EXPERIMENTAL RESULT 

 

A. Evaluation Metrics 

We utilized three generally used metric to quantitatively 

assess the execution of the proposed CMBs detection 

technique including sensitivity (S), precision (P) and the 

average number of false positives per subject (FPavg).  

They are defined as follows: 

 

  (4) 
 

Where TP, FP and FN denote the total number of true-

positive, false-positive and false-negative detection results, 

respectively. The N represents the number of subjects in 

the testing dataset. 

 

 
Fig 9. (a) Examples of score volume generation  

(b) Candidate generation 

 

The models converged in around 50 minutes. The 3D FCN 

deduction would take around 1 minute to prepare an entire 

MR image with size of 512x512x150, and the 3D CNN in 

the second stage was very quick and could handle a 

subject inside 1 second. 
 

 
Fig 10. Examples of True CMBs detection  

(Green rectangles)  

 

V. CONCLUSION 

 

In this paper, a two-stage cascaded framework for CMBs 

detection was introduced. The proposed framework is used 

to reduce its computational cost and improve the detection 

performance. This framework followed by the use of a 

shape descriptor based on features called Hierarchical 

centroids. The first (screening) stage removes the non-

CMBs regions and screening potential candidates. In this 

stage we develop the 3D FCN strategy eliminates the 

number of redundant convolutional computations, and 

hence dramatically speeds up the detection procedure. The 

second (discrimination) stage focuses on the candidates 

and remove the difficult false positive which are similar to 

the CMBs. In this stage we take up 3D CNN to identify 
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the true CMBs while applying the HCSD. The proposed 

framework can be effectively adjusted to other detection 

and segmentation tasks and support the use of 3D CNNs 

on volumetric medical data. 
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